Direkt zum Inhalt Direkt zur Navigation
Sie sind hier: Startseite Nachrichten Wissenschaft Eine neue Dimension in der Sonnenforschung

Eine neue Dimension in der Sonnenforschung

Archivmeldung vom 28.10.2006

Bitte beachten Sie, dass die Meldung den Stand der Dinge zum Zeitpunkt ihrer Veröffentlichung am 28.10.2006 wiedergibt. Eventuelle in der Zwischenzeit veränderte Sachverhalte bleiben daher unberücksichtigt.

Freigeschaltet durch Thorsten Schmitt
Abb. 1: Aufnahme einer Sonneneruption mit dem Koronagraphen LASCO an Bord der Sonnensonde SOHO. Die Sonne verbirgt sich hinter der Scheibe, ihre Lage und Größe sind durch den Kreis angedeutet. Bild: Max-Planck-Institut für Sonnensystemforschung
Abb. 1: Aufnahme einer Sonneneruption mit dem Koronagraphen LASCO an Bord der Sonnensonde SOHO. Die Sonne verbirgt sich hinter der Scheibe, ihre Lage und Größe sind durch den Kreis angedeutet. Bild: Max-Planck-Institut für Sonnensystemforschung

Am 25. Oktober 2006 starteten vom amerikanischen Weltraumbahnhof Cape Canaveral die zwei Raumsonden der STEREO-Mission und leiteten damit eine neue Ära in der Sonnenforschung.

Abb. 2: Die Positionen der beiden STEREO-Sonden bezüglich Erde und Sonne (oben links mit angedeuteter Eruption). Bild: NASA
Abb. 2: Die Positionen der beiden STEREO-Sonden bezüglich Erde und Sonne (oben links mit angedeuteter Eruption). Bild: NASA
Abb. 3: Eine der beiden STEREO-Sonden mit den drei Sonnenteleskopen (Experiment SECCHI/SCIP), der Weitwinkelkamera (SECCHI/HI), den Teilchensensoren (IMPACT und PLASTIC) und dem Radiowellenexperiment (SWAVES). Während die blauen Sonnensegel der Sonne zugewandt sind, zeigt die Parabolantenne links in Richtung der Erde. Bild: Johns Hopkins University, Laurel, MD
Abb. 3: Eine der beiden STEREO-Sonden mit den drei Sonnenteleskopen (Experiment SECCHI/SCIP), der Weitwinkelkamera (SECCHI/HI), den Teilchensensoren (IMPACT und PLASTIC) und dem Radiowellenexperiment (SWAVES). Während die blauen Sonnensegel der Sonne zugewandt sind, zeigt die Parabolantenne links in Richtung der Erde. Bild: Johns Hopkins University, Laurel, MD

An dieser internationalen Mission ist federführend auf deutscher Seite das Max-Planck-Institut für Sonnensystemforschung (MPS) in Katlenburg-Lindau beteiligt. Dank einer neuartigen dreidimensionalen Beobachtungstechnik soll das Projekt unser Verständnis von den Prozessen auf der Sonnenoberfläche und ihren Auswirkungen auf die Erdatmosphäre ("Weltraumwetter") verbessern.

Die Sonne spielt eine zwiespältige Rolle für das Leben auf unserer Erde. Einerseits erwärmt sie die Erde auf lebensfreundliche Temperaturen, andererseits sendet sie lebensbedrohliche UV-Strahlung sowie elektrisch geladene Teilchen aus. Dieser Partikelstrom - Sonnenwind genannt - weht mit einer Geschwindigkeit von mehreren Millionen Kilometern pro Stunde durch das Planetensystem und besteht vorwiegend aus Wasserstoff- und Heliumionen. Vor 20 Jahren entdeckte man abrupte Störungen des Sonnenwinds, die von Eruptionen auf der Sonnenoberfläche herrühren (Abb. 1); sie treten mit einer elfjährigen Periode mal häufiger (mehrere pro Tag) mal seltener (einer in zwei Wochen) auf.

Solche Ausbrüche schleudern enorme Gasmassen von bis zu zehn Milliarden Tonnen (entsprechend etwa der Masse des Harzer Brockens) in den interplanetaren Raum hinaus - besonders während der solaren Aktivitätsmaxima treffen diese gelegentlich die Erde. Während das irdische Magnetfeld den normale Sonnenwind in einem Abstand von 10 bis 15 Erdradien um unseren Planeten herumleitet, staucht der ernorme Druck der Gaswolken den Abstand dieser Grenzfläche (Magnetopause) zur Erde bis auf die Hälfte zusammen. Das verursacht Polarlichter bis nach Mitteleuropa und setzt Astronauten im All für mehrere Stunden einer verstärkten Strahlendosis aus. Außerdem kann das Teilchenbombardement die Elektronik von Telekommunikations- und Fernsehsatelliten zerstören.

Die STEREO-Mission ("Solar TErrestrial RElations Observatory") soll die Methode zur Untersuchung von Sonneneruptionen und Sonnenwind verbessern. Sieben Jahre lang entwickelten weltweit führende Forschungseinrichtungen unter dem Projektmanagement der amerikanischen Raumfahrtbehörde NASA und der europäischen ESA die nahezu baugleichen Sonden. Das Max-Planck-Institut für Sonnensystemforschung steuert in Zusammenarbeit mit den Universitäten Kiel und Göttingen wichtige Teile für Teleskope und Teilchendetektoren an Bord bei. Eine Delta II-Rakete soll die beiden 620 Kilogramm schweren STEREO-Sonden von der Größe eines Kleinbusses (6,4 mal 4,3 mal 2,6 Meter) in den Orbit bringen.

Nach zwei bis drei Monaten und mehreren Umrundungen der Erde lenkt der Mond die Späher auf eine Bahn um die Sonne ab. Dabei erhält die eine Sonde eine etwas schnellere, die andere eine etwas langsamere Bahngeschwindigkeit als die Erde. Von der Sonne aus gesehen entfernen sich die Sonden von der Erde um etwa 20 Grad pro Jahr.

Mit zunehmendem Abstand blicken die Sonden somit aus zwei Perspektiven - gleichsam in "stereo" - auf die Sonne und den umgebenden Weltraum. Bislang untersuchte man Sonneneruptionen aus Erdnähe und aus einer Blickrichtung. Diese einäugige Betrachtungsweise erlaubte nur die Beobachtung von Gaswolken, die im rechten Winkel zur Erde beschleunigt werden, uns also nicht direkt betreffen. Und Teilchenschauer, die auf die Erde zurasen, ließen sich nur schlecht gegen den Sonnenhintergrund abbilden.

Jetzt verfügen die Forscher über zwei "Augen" und können die Sonnenoberfläche und die Sonnenumgebung (Atmosphäre, Korona, Heliosphäre) dreidimensional erfassen. Neben den dafür benötigten Teleskopen und Kameras sind weitere Instrumente auf den STEREO-Sonden installiert, die energiereiche Partikelströme von der Frontseite der Wolken und deren Radioemissionen messen (Abb. 3).

Die Wissenschaftler können nun die Sonneneruptionen und die erzeugten Schauer kosmischer Strahlung dreidimensional analysieren. Voraussichtlich werden dadurch bessere Vorhersagen über das Eintreffen der Gaswolken von solaren Eruptionen auf die Erdatmosphäre ermöglicht. Da ein solcher Partikelschauer erst nach zwei Tagen die Erde erreicht, werden die Betreibergesellschaften von Satelliten genügend Zeit haben, die empfindliche Elektronik ihrer Satelliten zu schützen.

Geplant ist die Mission für zunächst zwei Jahre. Die Forscher am MPS und an zahlreichen weiteren Instituten in den USA, Europa und Japan werden aber über mehrere Jahre mit der Auswertung der Daten beschäftigt sein. Hierbei wenden sie verschiedene spektroskopische Verfahren an. Daraus wollen die Wissenschaftler lernen, die zuverlässigen Prognosen über die Eruptionen und die Ausbreitungsrichtung der Gaswolken zu erstellen. Die Arbeiten des MPS an der STEREO-Mission wurden von den Bundesministerien für Forschung und Technologie sowie für Wirtschaft im Rahmen einer DLR Forschungsförderung finanziell unterstützt.

Quelle: Pressemitteilung Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Videos
Daniel Mantey Bild: Hertwelle432
"MANTEY halb 8" deckt auf - Wer steuert den öffentlich-rechtlichen Rundfunk?
Mantey halb 8 - Logo des Sendeformates
"MANTEY halb 8": Enthüllungen zu Medienverantwortung und Turcks Überraschungen bei und Energiewende-Renditen!
Termine
Newsletter
Wollen Sie unsere Nachrichten täglich kompakt und kostenlos per Mail? Dann tragen Sie sich hier ein:
Schreiben Sie bitte espe in folgendes Feld um den Spam-Filter zu umgehen

Anzeige