Direkt zum Inhalt Direkt zur Navigation
Sie sind hier: Startseite Nachrichten IT/Computer Laser pumpt Flüssigkeiten durch Mikrochip

Laser pumpt Flüssigkeiten durch Mikrochip

Freigeschaltet am 13.03.2019 um 09:33 durch Thorsten Schmitt
Der texanische Wissenschaftler Jiming Bao in seinem Labor.
Der texanische Wissenschaftler Jiming Bao in seinem Labor.

Bild: uh.edu

Forscher der University of Houston haben sogenannte mikrofluidische Pumpen entwickelt, die nicht mechanisch, sondern fotoakustisch funktionieren. Als Antrieb dient ein Laser. Bei der Fotoakustik wird Licht in Schall umgewandelt. Dieser Schall dient im Fall der Pumpe aus Houston als Beschleunigungselement für Flüssigkeiten. Je nachdem, wie der Laserstrahl ausgerichtet ist, lassen sich Flüssigkeiten in unterschiedliche Richtungen pumpen.

Plasmonische Quartz-Platte

Mikrofluidische Pumpen werden benötigt, um winzige Flüssigkeitsmengen zu bewegen, etwa auf sogenannten "Labs on a Chip". Das sind Systeme, oft auf Siliziumbasis, die fluidische und elektronische Elemente vereinen. Sie lassen sich beispielsweise nutzen, um Wasser auf Schadstoffe zu untersuchen oder Körperflüssigkeiten zu analysieren.

Die neue Pumpe basiert auf einer sogenannten plasmonischen Quartz-Platte, in der sich vereinzelt Goldatome befinden. Ein Laser löst darin eine Ultraschallwelle aus, die die Flüssigkeit vor sich hertreibt. "Wir können mit dem Laser Flüssigkeiten in beliebige Richtungen bewegen", sagt Jiming Bao, Assistenzprofessor für Elektrotechnik und Computerwissenschaften an der Universität in Houston.

Zehn Brd. Goldatome aktiv

Mit seinem Team hat Bao in den Quartz zehn Brd. Goldatome pro Quadratzentimeter implantiert. Die Pumpe ist so groß wie ein Fingernagel. Wenn die Goldatome von gepulstem Laserlicht angeregt werden, lösen sie an der Oberfläche akustische Wellen aus. Die Nanoteilchen aus Gold böten schier unzählige Ziele für die Laserpulse. Flüssigkeiten könnten damit weitaus präziser gesteuert werden als mit einer mikromechanischen Pumpe. Die fotoakustische Pumpe könnte auch eingesetzt werden, um Medikamente zu dosieren.

Für Wei-Kan Chu, Physiker an der Universität und Spezialist für Supraleitung, ist die wahre Bedeutung der Innovation derzeit noch gar nicht abzuschätzen. "Wenn wir diese Technik noch besser verstehen lernen, könnten sich Anwendungsmöglichkeiten ergeben, die heute noch jenseits unserer Vorstellungskraft liegen", erläutert der Wissenschaftler abschließend.

Quelle: www.pressetext.com/Wolfgang Kempkens

Anzeige:
Videos
NHS 3.0
Das Universalgenie, die NHS 3.0
Bild: CC0 / Pixabay
NoFap, ein lohnenswertes Ziel?
Termine
Newsletter
Wollen Sie unsere Nachrichten täglich kompakt und kostenlos per Mail? Dann tragen Sie sich hier ein:

Anzeige