Direkt zum Inhalt Direkt zur Navigation
Sie sind hier: Startseite Berichte Wissenschaft Super-Aktivierung an den Synapsen?

Super-Aktivierung an den Synapsen?

Archivmeldung vom 09.01.2016

Bitte beachten Sie, dass die Meldung den Stand der Dinge zum Zeitpunkt ihrer Veröffentlichung am 09.01.2016 wiedergibt. Eventuelle in der Zwischenzeit veränderte Sachverhalte bleiben daher unberücksichtigt.

Freigeschaltet durch Thorsten Schmitt
Super-Aktivierung von AMPA-Rezeptoren durch wiederholte Stimulation
Quelle: Plested, FMP (idw)
Super-Aktivierung von AMPA-Rezeptoren durch wiederholte Stimulation Quelle: Plested, FMP (idw)

Nervenzellen müssen extrem schnell reagieren und je nach Aufgabe auch ihr Tempo drosseln können. Berliner Wissenschaftler haben nun gezeigt, dass ein Rezeptor in den Synapsen gleich beides beherrscht und manifestierten mit ihrer Arbeit ein weiteres Beispiel für die erstaunliche Flexibilität des Gehirns auf molekularer Ebene.

Tag für Tag leistet das Gehirn schier Unglaubliches – ob wir nach einem Ball hechten, Schallwellen verarbeiten oder Erinnerungen über Jahrzehnte hinweg abspeichern. Möglich ist diese Bandbreite, weil Nervenzellen extrem schnell reagieren und bis zu 1000 elektrische Impulse pro Sekunde erzeugen können, aber auch viel langsamere Reaktionen im Repertoire haben, bei denen die einzelnen Impulse länger anhalten. Wieso die Nervenzellen so flexibel reagieren, wird weltweit von vielen Arbeitsgruppen erforscht. Zwei Wissenschaftler am Leibniz-Institut für Molekulare Pharmakologie in Berlin (FMP) haben nun eine überraschende Entdeckung gemacht: Flexibilität wird bereits auf Molekülebene erzeugt – der häufigste Rezeptor an unseren Synapsen kann je nach eingehendem Signal zwischen zwei verschiedenen Funktionsweisen umschalten. Es handelt sich um den Glutamatrezeptor vom Typ AMPA, der das von benachbarten Zellen ausgeschüttete Glutamat erkennen kann. Dieser chemische Händedruck ermöglicht es den Nervenimpulsen von einer Zelle zur nächsten zu springen. Der AMPA-Rezeptor galt seit über 30 Jahren als echter Spezialist für aufeinanderfolgende, schnelle Impulse: in weniger als einer Millisekunde kann er zwischen der geschlossenen und geöffneten Form wechseln. Anna Carbone und Andrew Plested (beide FMP und Mitglieder des Exzellenzcluster NeuroCure) haben nun gezeigt, wiederholte Aktivierungen drängen den Rezeptor in einen langsamen Modus, mit zugleich hoher Aktivität. In diesem Zustand der Super-Aktivierung kann er bis zu einer Sekunde geöffnet bleiben.

Der Ursprung ihrer Forschungsarbeit war vor vielen Jahren die Zufallsmutation einer Labormaus. Die „Sternengucker-Maus“ war zuerst durch ihre epileptischen Anfälle aufgefallen, bei denen sie mitunter den Kopf hochreckt und wie in Trance nach oben schaut. Später fand man heraus, dass bei der „Sternengucker-Maus“ ein bestimmtes Protein defekt ist, das normalerweise mit dem AMPA-Rezeptor einen Komplex bildet. Man taufte das Protein Stargazin und die beiden FMP-Forscher experimentierten damit in Zellkulturen, wie bereits viele Forscher vor ihnen. Unter unterschiedlichen Bedingungen zeichneten sie mittels des Patch-Clamp-Verfahrens den Stromfluss durch einzelne Rezeptor-Poren auf, die mit Stargazin Komplexe bildeten. Durch gezielte Punktmutationen veränderten sie die mechanischen Eigenschaften des Rezeptors, um seiner Funktionsweise auf die Spur zu kommen. Dabei fanden sie mehrere unerwartete Formen der Aktivität. Ihr Erklärungsmodell, das jetzt in Nature Communications veröffentlicht wurde, ist einfach: Demzufolge befindet sich der AMPA-Rezeptor grundsätzlich im schnellen-Modus, kann aber durch zusätzliche Aktivierung durch das Protein Stargazin in einen langsamen Modus versetzt werden. Diese Super-Aktivierung ist eine Art Kurzzeitgedächtnis auf Molekülebene, durch die eine positive Rückkopplung entsteht.

Positive Rückkopplungsschleifen sind in der Biologie weit verbreitet und lebenswichtig, zum Beispiel der Ferguson-Reflex, der bei der Geburt dazu dient, die Wehen zu unterstützen. „Soweit ich weiß, haben wir zum ersten Mal gezeigt, dass eine positive Rückkopplungsschleife auch innerhalb eines einzigen Molekülkomplexes ablaufen kann. Der Vorteil dabei ist, dass die Super-Aktivierung sich schnell aufbaut und auch schnell wieder abbaut“, sagt Andrew Plested. Normalerweise setzen Feedback-Schleifen erst nach Minuten oder Stunden ein. Beim AMPA-Rezeptor startet die Super-Aktivierung in weniger als einer Sekunde. „Es gab schon seit einiger Zeit Hinweise darauf, dass der AMPA-Rezeptor auch im langsamen Modus arbeiten kann, aber bis jetzt konnte sich das keiner erklären“, sagt Andrew Plested. Die Gruppe untersucht nun mit aller Kraft, welche Rolle die Super-Aktivierung im Gehirn spielt. Ihr Modell könnte dabei helfen, Synapsen und die Plastizität des Gehirns besser zu verstehen, und es könnte langfristig dazu beitragen, neurologische Erkrankungen zu behandeln.

Quelle: Leibniz-Institut für Molekulare Pharmakologie (FMP) (idw)

Videos
Daniel Mantey Bild: Hertwelle432
"MANTEY halb 8" deckt auf - Wer steuert den öffentlich-rechtlichen Rundfunk?
Mantey halb 8 - Logo des Sendeformates
"MANTEY halb 8": Enthüllungen zu Medienverantwortung und Turcks Überraschungen bei und Energiewende-Renditen!
Termine
Newsletter
Wollen Sie unsere Nachrichten täglich kompakt und kostenlos per Mail? Dann tragen Sie sich hier ein:
Schreiben Sie bitte west in folgendes Feld um den Spam-Filter zu umgehen

Anzeige