Direkt zum Inhalt Direkt zur Navigation
Sie sind hier: Startseite Berichte Wissenschaft Laserpulse erzeugen Nano-Antennen

Laserpulse erzeugen Nano-Antennen

Archivmeldung vom 03.06.2014

Bitte beachten Sie, dass die Meldung den Stand der Dinge zum Zeitpunkt ihrer Veröffentlichung am 03.06.2014 wiedergibt. Eventuelle in der Zwischenzeit veränderte Sachverhalte bleiben daher unberücksichtigt.

Freigeschaltet durch Manuel Schmidt
Die Nanoantenne nach dem Laserbeschuss
Quelle: TU Wien (idw)
Die Nanoantenne nach dem Laserbeschuss Quelle: TU Wien (idw)

Wenn man fest mit einem zentimetergroßen Hammer auf eine Metallplatte schlägt, kann man nicht erwarten, dass man dadurch millimeterfeine Kunstgravuren hinterlässt. Ein vergleichbares Kunststück gelingt allerdings an der TU Wien mit Hilfe von Laserpulsen: Beschießt man Metalloberflächen auf die richtige Weise mit Laserlicht, entstehen feine Antennenstrukturen, die um Größenordnungen kleiner sind als der Durchmesser des Laserpulses. Diese Nano-Antennen eigenen sich hervorragend zum Aussenden von Elektronen.

Letzte Feinjustage für die Bearbeitung einer Oberfläche mit sub-10fs Laserstrahlung.
Quelle: TU Wien (idw)
Letzte Feinjustage für die Bearbeitung einer Oberfläche mit sub-10fs Laserstrahlung. Quelle: TU Wien (idw)

Spitze Strukturen fördern den photoelektrischen Effekt

Wenn Licht auf eine Metalloberfläche auftrifft, können Elektronen herausgelöst werden. Dieser „photoelektrische Effekt“ ist schon lange bekannt. Doch nicht überall fällt es den Elektronen gleichermaßen leicht, die Oberfläche zu verlassen: Weist sie feine, spitze Strukturen auf, lösen sich deutlich mehr Elektronen heraus als das bei einer völlig glatten Oberfläche möglich wäre. Genau in den Spitzen tritt nämlich ein besonders starkes elektrisches Feld auf. Dieser Effekt ähnelt der Tendenz eines Blitzes, in hohen, spitzen metallischen Masten einzuschlagen.

Besonders stark ist dieser Effekt, wenn die Spitze auch noch einer Mulde sitzt, die einfallende Wellen zur Spitze hin fokussiert. Die Herstellung solcher Strukturen gelang nun Prof. Wolfgang Husinsky vom Institut für Angewandte Physik der TU Wien in Zusammenarbeit mit führenden Fachkollegen aus Russland (Sergey Makarov,Sergey Kudryashov, Lebedev Physics Institute Russian Academy of Sciences).

„Je nachdem, welche Laserparameter man wählt, können Laserpulse zu Nanostrukturen verschiedenster Art führen“, sagt Wolfgang Husinsky. Ausschlaggebend sind die Laserleistung, die Pulszeit, die genaue Form des Laserpulses sowie die Anzahl der Pulse, die man auf die Oberfläche abfeuert. Am Institut für Angewandte Physik der TU Wien wird schon lange an extrem kurzen Laserpulsen geforscht: Weniger als 10 Femtosekunden (10^(-15) Sekunden) dauern die kürzesten Lichtblitze in Wolfgang Husinskys Labor.

Erst ein Krater, dann eine Antenne

Der Erfolg stellte sich mit einer Kombination aus zwei Laserpulsen ein: Der erste hinterlässt kreisrunde Krater mit einem Durchmesser von etwa 1.3 Mikrometern. Schuld daran sind Plasmonen und Polaritonen – Anregungen der Elektronen im Metall und Kopplungen von elektrischen Feldern mit Atomschwingungen. Der Bereich, der vom Laserpuls beleuchtet wird, ist viel größer als diese Krater, so kann also ein einziger Laserpuls eine Vielzahl an Kratern erzeugen.

Wenn man dann dieselbe Stelle noch einmal mit einem weiteren Laserpuls beschießt, dann bildet sich bei geeigneten Laserparametern in den Kratern eine Spitze aus. Das elektrische Feld des Lasers wird durch die Form des Kraters lokal verändert, und dieses starke Feld wird durch die nadelförmige Antenne, die bloß einige Dutzend Nanometer dick ist, weiter verstärkt Diese Nanoantennen im Mikro-Krater sind perfekt für die Elektronenemission. Wenn Licht auf diese Nanostrukturen fällt, wird es vom Krater auf die Spitze fokussiert, ähnlich wie ein Parabolschirm die Wellen eines Satelliten auf die Fernsehantenne lenkt. So ist eine fünfzigmal höhere Elektronenemission möglich als bei einer völlig ebenen und glatten Metalloberfläche.

Vom Aluminium bis zum Protein

„Die Materialbearbeitung mit ultrakurzen Laserpulsen ist ein boomendes Forschungsgebiet, das bei vielen verschiedene Materialien tolle Anwendungsmöglichkeiten verspricht“, ist Wolfgang Husinsky überzeugt. Im Rahmen des von der österreichischen Forschungsgesellschaft FFG geförderten Projektes gemeinsam mit einem Partnerunternehmen, der Femtolasers Produktions-GmbH, untersucht er mit seinem Team Strukturierungsmöglichkeiten von Metallen bis hin zu organischen Materialien wie Kollagen, dem Hauptbestandteil unserer Knochen.

Die Strukturen, die mit Laserpulsen auf Oberflächen erzeugt werden, sind meist winzig, doch verhältnismäßig große Flächen können in einem einzigen Schritt bearbeitet werden. In bestimmten Fällen lassen sich zentimetergroße periodische Strukturen erzeugen. Das ist allerdings nur möglich, wenn man die mikroskopischen Abläufe auf der Festkörperoberfläche genau versteht: „Wenn wir eine Folge von mehreren Laserpulsen auf die Oberfläche abfeuern, dann gibt es eine riesengroße Anzahl an Parametern, die man einstellen kann“, sagt Wolfgang Husinsky. „Die Zahl der Pulse, die Intensität, die Dauer jedes einzelnen Pulses – es ist völlig undenkbar, jede mögliche Parameter-Kombination durchzuprobieren, um das optimale Resultat zu erhalten.“

Man wird also auch weiterhin gut durchdachte Grundlagenexperimente und Simulationsrechnungen benötigen, um ähnliche Erfolge erzielen können wie mit den Nanoantennen.

Quelle: Technische Universität Wien (idw)

Videos
Daniel Mantey Bild: Hertwelle432
"MANTEY halb 8" deckt auf - Wer steuert den öffentlich-rechtlichen Rundfunk?
Mantey halb 8 - Logo des Sendeformates
"MANTEY halb 8": Enthüllungen zu Medienverantwortung und Turcks Überraschungen bei und Energiewende-Renditen!
Termine
Newsletter
Wollen Sie unsere Nachrichten täglich kompakt und kostenlos per Mail? Dann tragen Sie sich hier ein:
Schreiben Sie bitte nannte in folgendes Feld um den Spam-Filter zu umgehen

Anzeige